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The blowing of gas against a supersonic stream washing the nose region of vehicles is 
one method for controlling aerodynamic characteristics [I]. The blowing of gas through a 
permeable surface also offers the possibility of modeling the complex process of ablation of 
heat shields of vehicles under the action of a high-enthalpy gas stream [2, 3], and also of 
investigating the influence of this ablation on the aerodynamic characteristics. Theoretical 
and experimental investigations, e.g., in [4-20], show that with sufficiently intense blowing 
of gas through a permeable section of the side surface, when detachment of the boundary layer 
occurs, the flowpicture is altered appreciably compared with flow over the body with no 
blowing. In this case the surface pressure is nonmonotonic, which in turn affects the body 
drag. 

This paper presents results of systematic calculations of supersonic flow over bodies 
with spherical or end-plane blunting in the presence of intense blowing of gas through the 
end segment of part of the side surface. We investigated the influence of the permeable sec- 
tion length and the distribution law of blown gas flow rate on the aerodynamics of these 
bodies of revolution. It was established that under certain conditions one obtains a sub- 
stantially unsteady flow regime accompanied by fluctuations in the area of separated flow, 
the pressure fields and the velocities. It was shown that for each blown mass flow rate 
(pvn) w there is an optimal length of permeable section for which the frontal body drag is a 
mlnlmum. The authors investigated the flow structure with subsonic and sonic gas blowing 
and showed that in the latter case there is a density discontinuity between the contact sur- 
face and the wetted body surface. It was established that with local blowing one can form a 
reverse flow region on the body surface. 

I~ Statement of the Problem. An asymptotic analysis of the Navier--Stokes equations 
[11, 12] has shown that at large Reynolds number of the blown gas and the incident flow one 
can divide the flow region between the shock wave and the body into two inviscid gas flow 
regions separated by a mixing layer in which molecular transport processes are important. 
Since in most cases the characteristic dimension of the mixing zone is small compared with 
the shock layer thickness, in calculating the aerodynamic characteristics one replaces it by 
the area of separated flow. Thus, the problem of supersonic flow over a body with intense 
gas blowing on its surface reduces to solving a system of gasdynamics equations in the shock 
layer and in the layer of blown gas with the appropriate boundary conditions at the shock 
wave, the contact surface and the body surface. 

Mathematically this problem reduces to solving the equations of gasdynamics written in 
vector form in a cylindrical coordinate system x, r, t: 

O F l O t - k O P l a x - k O Q / S r  + r-~R = O, ( 1 . 1 )  

F =  u , P =  p u l i p  puv , pu~ 

Here  e = e + (u 2 + v a ) / 2  i s  t h e  t o t a l  e n e r g y  p e r  u n i t  mass o f  gas  (sum o f  t h e  i n t e r n a l  and  
k i n e t i c  e n e r g i e s ) ;  p ,  p r e s s u r e ;  p ,  d e n s i t y ;  a nd  u a nd  v ,  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r .  

The s y s t e m  of  e q u a t i o n s  ( 1 . 1 )  i s  c l o s e d  by  t h e  p e r f e c t  gas e q u a t i o n  o f  s t a t e  

e = p l ( ?  - -  i)p. ( 1 . 2 )  

As initial conditions we have either the incident stream parameters over the whole flow 
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field, or parameters obtained by calculating the previous Variant. At the shock wave we have 
the well-known Rankine--Hugoniot relations 

P~(vn8 - -  D~) = p~(v~ sin ~ -  Dn) ,  ( 1 . 3 )  

P~ -k  p~v~8(v~. - -  D ~ )  = p ~  "k p ~ v ~  sin a(v~ sin a - -  Dn),  

e,  - -  e=  = - - [ ~ 8  "-k P ~ ) / 2 ] ( t / P a  - -  t ~ ) ,  v~  = v~ cos a, 

where  Vns , V~s a r e  t h e  n o r m a l  and  t a n g e n t i a l  v e l o c i t i e s  b e h i n d  t h e  s h o c k ;  Dn, v e l o c i t y  of  
m o t i o n  o f  t h e  s h o c k  wave a l o n g  t h e  n o r m a l  t o  i t s  s u r f a c e ;  p~,  v~ ,  p~ ,  r e s p e c t i v e l y ,  t h e  v e Z o c -  
i t y  and  t h e  p r e s s u r e  i n  t h e  i n c i d e n t  s t r e a m ;  Os, P s ,  gas p r e s s u r e  and  d e n s i t y  b e h i n d  t h e  
s h o c k ;  and  o ,  a n g l e  b e t w e e n  t h e  t a n g e n t  t o  t h e  s h o c k  wave and t h e  x a x i s .  At  t h e  c o n t a c t  
b r e a k d o w n  a r e a  we r e q u i r e  c o n t i n u i t y  o f  t h e  p r e s s u r e  and t h e  n o r m a l  v e l o c i t y  c o m p o n e n t .  On 
t h e  l a t e r a l  s u r f a c e  o f  a b l u n t  body t he  f o l l o w i n g  c o n d i t i o n s  a r e  u s e d :  

(pvn)w = f ( ~ ,  O ~ S ~ l ,  ( 1 . 4 )  

?~p~/[(?~ - -  l)  p~] -k v~/2~= ho~, v ~  v ~ c o s ~ ,  vnw = 0, s > ~1" 

Here  S b l  i s  t h e  l e n g t h  o f  t h e  p e r m e a b l e  s e c t i o n  o f  t h e  s i d e  s u r f a c e  o f  t h e  b o d y ;  how, t o t a l  
e n t h a l p y  of  t h e  b l o w n  g a s ;  Vw, a b s o l u t e  v e l o c i t y  o f  t h e  b l o w n  g a s ;  ~ ,  a n g l e  b e t w e e n  t h e  n o r -  
mal  to the blowing surface and the velocity vector Vw; Yw, adiabatic exponent of the blown 
gas. For an increase in the blowing parameter (OVn)w, with other conditions unchanged, there 
is an increase of the velocity vw at the surface of the permeable section, and for a specific 
value of (pvn) w "choking" of the pore channels can occur, i.e., the velocity of discharge of 
the blowing products can become sonic or even supersonic [18]. In this case if the Mach 
number Maxa Mw of the blown gas is not prescribed the computation becomes unstable because 
a zone of supersonic velocities appears on the blowing surface and there form strong shock 
waves and boundary conditions (1.4) on the permeable surface that will not support a correct 
solution of the problem [18, 20]. Therefore, for supersonic blowing of gas the boundary 
conditions (1.4) on the permeable part of the side surface are supplemented by assigning the 
Mach number Maxa M w of the blown gas. 

The flow characteristics presented below are dimensionless quantities: the velocity is 
referenced to the maximum velocity of the incident stream Vmax,~ , the density to the inci- 
dent stream density p~, the pressure to the quantity p~v~ax,= , and the linear dimensions are 
referenced to the nose radius or the midsection area. 

2. Method of Solution and Test Verification of the Program. The system of equations 
(1.1) and (1.2), along with the corresponding initial and boundary conditions (1.3) and (1.4 
is solved by the time-dependent finite-difference method of Godunov [21, 22] with an explicit 
selection of the bow shock wave and the separated flow surface, using a moving computational 
mesh. 

To check the accuracy of the difference scheme used, for a chosen number of computa- 
tional cells in problems with blowing we compared our results with data already known in the 
literature. On a mesh containing 400 cells we obtained marginal agreement with the results 
of [10] for the following initial data: 

M~ = 4,0, ?~ = ?~  = t , 4 ,  H = (l/2)hoJho~ = 0.5, 

(pv~)~ = 0,25; 0.5; 1.0, Sbl = 0,279. 

Reference [13] has presented results of calculations by the Telenin method of supersonic flow 
(M~o = I0, y~ = 1.4) over a spherically blunted body with the following boundary conditions on 
the lateral surface: 

K = 0,02, v w = v~0cos~0,  T w = Two = c o n s t ,  ? w =  ?~,  

2 2 
where  K = PwVw/p~v~ i s  t he  d i m e n s i o n l e s s  b l o w n  gas  momentum; and  e i s  t h e  c e n t r a l  a n g l e ,  
r e c k o n e d  f rom t h e  a x i s  of  s y m m e t r y .  For  n = 1 t h e  d e v i a t i o n  o f  t h e  s e p a r a t e d  f l o w  b o u n d a r y  
on t h e  a x i s  o f  symmet ry  f o r  t h e s e  a n g u l a r  c o n d i t i o n s  i s  0 . 0 9 3 5 .  The computed  v a l u e  o f  t he  
movement of the contact boundary according to our method is 0.094. The stagnation pressure 
on the contact breakdown surface, 0.876, is 3% different from the exact value of stagnation 
pressure behind the normal shock. The maximum error in calculating the Bernoulli integral 
is 4.5%. A comparison was also made with results from a program where an algorithm was 
written to calculate fields of gasdynamic parameters, described in [24]. This algorithm 
uses an iterative inverse method of solving the simplified Euler equations in the hypersonic 
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approximation. We considered the hypersonic flow over a spherical blunt body (M~ = I0, y~ = 
1.2) with the following conditions characterizing the blow gas flux: H = 0.5; (PVn) w = 0.5 
cos 0, ~w = Y~. 

The calculations with the two programs gave good agreement in the aerodynamic character- 
istics. In the movement of the contact boundary and the bow shock wave the maximum errors 
were observed on the periphery of the flow with s > 1.2, and were, respectively, 6.6 and 4.5%. 
We also noted that the greatest discrepancy was in the pressure distribution on the side sur- 
face (12%). 

A comparison with the results of the experimental investigations [26] for a porous 
cylinder model with hemispherical nose showed satisfactory agreement between the calculated 
and measured shock wave standoff distances, to an accuracy of 5% for (PVn) w = 0.25 and 2% for 

(pvn) w = 0.5. 

3. Special Features of the Flow in the Inviscid Shock Layer with Strong Subsonic and 
Sonic Blowing. Figures I and 2 show qualitatively different pictures of flow over a spheri- 
cal body in a supersonic stream (M~ = 4.0, y~ = 1.4), with subsonic and sonic blowing, re- 
spectively, through a permeable section of the side surface. Figure I shows the position 
and the shape of the bow shock wave, the contact breakdown surface, and the sonic line 
(broken curve) for the following subsonic blowing parameters: (PVn) w = 1.0, H = 0.5, Yw = 
y~, Sbl = 0.279. The streamlines constructed indicate that in this case the blown gas stream 
is turned back completely without separation beyond the point at which the blowing stops. A 
different picture is observed with sonic blowing ((PVn) w = 2.9, H = 0.5, Yw = Y~, Shl = 
0.225). It can be seen that in this case a density discontinuity is formed in the blown 
layer [18, 20], arising from stagnation and reversal of the blown gas flow. From analysis 
of the stream line picture we can detect the existence of a zone of circulatory flow due to 
the ejector action of the blown gas flow [15]. Curves I and 2 in Fig. 3 show the pressure 
distribution Pw over the side surface of the wetted body, for subsonic and sonic blowing, 
respectively. It can be seen that beyond the end of the permeable section the pressure in 
sonic blowing is an order less than the corresponding value in subsonic blowing. Curve 3 in 
Fig. 3 shows the distribution of pressure p along the axis of symmetry from the stagnation 
point to the shock wave. This curve clearly shows the density discontinuity in the blown 
layer which in this case is "smeared out" into several cells of the difference mesh. 

We also investigated the influence of the law for the distribution of blown gas flux 
over the body surface on the aerodynamic characteristics. We first examined blowing of gas 
distributed over the entire surface of a spherical body. For the first case we had the fol- 
lowing incident and blown gas parameters: 

M ~  = 4 ,0 ,  ~ =  = ? ~  = 1 ,4 ,  H = 0 .5 ,  ( p v n ) ~  = 0 . 2 5  ( 3 ,  l )  

The large blown gas flux here was a constant. With the gas flux assigned in this way the 
flow in the blown layer remained subsonic everywhere. In the second case the surface blowing 
of gas followed the following law: 

(pn)~  = 0.25 cos 0 ( 3 . 2 )  

and the previous flow conditions. The calculations showed that with this blowing the shock 
layer and the blown layer become appreciably thinner as one moves away from the axis of sym- 
metry, than in the previous case. Analysis of the sonic lines shows that with blowing dis- 
tributed according to a cosine law the subsonic part of the shock layer is appreciably 
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smaller than when one has constant flux of blown gas. At the periphery of the blown layer 
one sees a region of supersonic flow. The pressure distribution also depends appreciably on 
the nature of the distribution of blown gas flow rate over the body surface. This can be 
seen in Fig. 3, where curve 4 relates to case (3.l), and curve 5 to case (3.2). For compari- 
son curve 6 of Fig. 3 shows the pressure distribution over the surface of an impermeable body 
with spherical blunting and the same flow conditions. 

Figure 4a and b show the results of calculations of another case of the distribution of 
blown gas flow rate, where the blowing is a piecewise-constant function of the coordinate s, 
for a total dimensionless gas flow rate of Qw = 1.578, which corresponds to a permeable sec- 
tion length of Sbl = 1.05 with a specific mass flux of (PVn)w = 0.5. In Fig. 4a, which shows 
the position and shape of the bow shock wave, the contact breakdown surface and the sonic 
line (broken line), blowing is performed through two permeable sections of the side surface, 
separated by an impermeable section, with a constant flow rate of blown gas (PVn) w = 0.712. 
It can be seen that the standoff distance of the contact boundary from the body surface in 
this case is a nonmonotonic function of the coordinate s. Some decrease in the standoff 
distance is observed for values of the longitudinal coordinate corresponding to the imperme= 
able section. The corresponding graphs of pressure Pk at contact breakdown are shown in Fig. 
4b (curves 1 and 2), as a function of the vertical coordinate r k and the pressure Pw on the 
side surface of a spherically blunted body. The graphs shown by broken lines in Fig. 4b 
relate to blowing of gas through one permeable section of length Sbl = 1.05 with the same 
total flow rate Qw = 1.578 (curve 3 is pw and curve 4 is Pk). It can be seen that the seg- 
mented blowing of gas leads to an appreciably nonmonotonic behavior in the pressure. The 
local minimum in curve 2 shows the beginning of the impermeable section of the side surface. 
Further along the contour the pressure begins to increase, i.e., a positive pressure gradient 
appears, and at the start of the second permeable section the pressure reaches a certain 
maximum value, after which it again begins to fall. The presence of a positive pressure 
gradient beyond the point at which blowing stops is a characteristic feature of supersonic 
flow over a blunt body with finite blowing. It should be noted that there are unsteady 
oscillations of the contact breakdown surface beyond the point where blowing stops, as ob- 
served in calculated supersonic flow over a spherically blunted body (M~ = 4.0, y~ = 1.4) 
with blowing of hotter gas (H > 1.0) than the incident stream gas through a permeable section 

of length Sbl = 0.75 with mass flow rate (pvn) w = 0.5. The same oscillations were observed 
in an evaluation of the influence of the flow downwash angle ~ (see Eq. (1.4)) of the blown 
gas on the aerodynamic characteristics of a spherically blunted body, when this angle was 
varied linearly along the permeable section: 

= (~ddSbl)8, 
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where ~dw is the downwash angle in radians at the point where blowing stops. These oscilla- 
tions were observed with~dw varying from 0.349 to 1.047 with the following blown gas param- 

eters: H = 0.5, 7w = Y~, Sbl = 0.75, (PVn) w = 0.5. It is interesting that for ~dw = 1.396 
the unsteady oscillations of the contact discontinuity vanish. The presence of instability 
of tangential separation observed under some blown gas conditions does not contradict the 
results presented in [25]. 

.4- Influence of Strong Blowing on the Aerodynamics of Some Bodies of Revolution. As 
was shown above, strong blowing of gas through permeable sections of finite length leads to 
an appreciable change in the pressure distribution compared with the no blowing case, and 
thereby influences the frontal drag coefficient, which takes the form of the sum of the wave 
drag coefficient Cxb I, determined from the formula [26] 

Cbl = 4 I + ( ?~- - t )M~ -~- prdr- -  2' 
o ?~M~ 

and the  d rag  c o e f f i c i e n t  due to  the  j e t  i n f l u e n c e  o f  the  blown g a s ,  computed i n  a c c o r d a n c e  
w i t h  [18] from the  fo rmu la  

T 

' ( w - l )  Mi r ~g 

The s o l i d  l i n e s  i n  F i g .  5 show graphs  of  v a r i a t i o n  o f  wave drag  c o e f f i c i e n t  Cxh 1 f o r  a 
spherically blunted body, referenced to the wave drag coefficient Cxo of an impermeable body 
under the corresponding flow conditions, as a function of the length Sbl of the permeable 
section, for three values of the blowing parameter (PVn) w = 1.0; 0.5 and 0.25, under subsonic 
blowing conditions. An increase in the length of permeable section for a constant specific 
mass flow rate of blown gas leads first to a reduction of the wave drag coefficient. A 
further increase of the parameter Sbl can produce the result that the wave drag coefficient 
of the wetted bodybecomes larger than the corresponding coefficient for the impermeable 
body (curves 2 and 3). Here the broken lines show curves of the total frontal drag coeffi- 
cient, referenced to the value Cxo, cx = Cxbl + Cxjet. It can be seen from the behavior of 
these curves that the total drag of the body in the presence of strong subsonic blowing 
depends appreciably both on the length of the permeable section, and on the mass flow rate 
of blown gas, and it can be greater or less than the drag of the impermeable body immersed 
in the flow under the same conditions. For each value of (PVn) w there is a specific length 
of permeable section for minimum body frontal drag. 

The results of calculating the drag coefficients in flow over a cone of semi-vertex 
angle I0 ~ blunted to be a body with generator equation x I~ + r I~ = I, and also the standoff 
distances for the shock wave and the contact discontinuity surface along the axis of sym- 
metry, as a function of the dimensionless mass flow rate (PVn)w, under supersonic flow condi- 
tions (M~ = 4.0, y~ = Yw = 1.4, H = 0.5, sbi = 0.7) are shown in Fig. 6, where curve ! gives 
the frontal drag coefficient Cx for the spherical blunting, and curve 2 gives the same co- 
efficient for flow over a body with a blunt end face. Curves 3 and 4 show the variation of 
exb I and Cxjet for this body. Curves 5 and 6 show the standoff distances of the shock wave 
and the contact boundary on the symmetry axis. From analysis of curves I and 2 one can con- 
clude that, other conditions being equal, for a given length of permeable section sbi = 0.7, 
blowing of gas is more efficient, from the viewpoint of reducing frontal drag, for a body 
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with a blunt face. While, for a body with spherical blunting, starting at the value (PVn) w 
0.7, the coefficient Cx begins to increase, for a blunt-face body it continues to decrease, 
at least until a blowing intensity of (PVn) w = 1.0. The standoff distances for the shock 
wave and the contact breakdown surface on the axis of symmetry are practically linear func- 
tions of the gas mass flow rate. 

The calculations have shown that sonic blowing of gas ((PVn)w > 1.0) against a super- 
sonic stream with the same length of permeable section Sbl = 0.7 as in the subsonic blowing 
case leads to a sharp increase in the "jet" drag and thereby in the total drag, which can 
become much larger than the corresponding value for flow over an impermeable body. 
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WALL INFLUENCE ON THE AERODYNAMIC CHARACTERISTICS OF 

AN OSCILLATING AIRFOIL 

V. A. Algazin UDC 533.6 

The difference between the aerodynamic characteristics of an airfoil in an unbounded 
fluid and an airfoil in the neighborhood of a wall is of great practical interest. It is of 
interest not only in the design of transport vehicles using wings as lifting surfaces but 
also in the development of new propulsive systems using flapping wings [I]. Computations on 
the unsteady aerodynamic characteristics of airfoils in the neighborhood of a solid boundary 
have been carried out in a number of papers, e.g., [2-4]. A fairly comprehensive review of 
literature in this field is available in [5, 6]. The common feature in all these methods 
[2-6] is that they have been carried out within the framework of linear theory for thin air- 
foils with small camber. There are very few independent results for the nonlinear problem 
(see, e.g., [5, 6]) but even they are only for the case of an airfoil moving extremely close 
to the wall or under steady-state conditions. The nonlinear problem of the flapping motion 
of a thin airfoil in the neighborhood of a solid plane wall in an ideal incompressible fluid 
is investigated in this paper. In this nonlinear problem the shape of the vortex sheet 
behind the airfoil is not specified initially but is determined in the course of the solu- 
tion. The problem has been solved by the method of discrete vortices [7]. 

1. Consider the motion of a thin airfoil in an ideal, incompressible fluid on a solid, 
plane boundary. We introduce a Cartesian coordinate system 01xlyl (nondimensionalized with 
respect to the chord length) in which the fluid is at rest at ~nfinity. Let at time T = 0 
the airfoil start from rest with a specified initial velocity V (xl, Yl, t), where t = VoT/b, 
and Vo is a certain characteristic speed (e.g., Vo = IV(T,)[, T, > 0). The airfoil is re- 
placed by an infinitely thin plate So(t), assuming the effect of thickness to be negligible. 
The vortex wake behind the plate is denoted by S~(t). The fluid motion outside the contour 
S = So U $i is assumed to be potential. 

The contour S(t) is modeled by a vortex sheet of strength y = v o_ -- vo+, and the pres- 
sure jump across the point M~S(t) will be determined by the Cauchy--Lagrange integral 

5 

p_--p+ = Of pV~ - -  ~ V(~, t) do'- -V(s ,  t)(Voa--vea), (1.1) 
0 

where the positive and negative signs represent the limiting values of the functions when 
approaching the contour S(t) from above and below, respectively; the index denotes the pro- 
jection of the vector onto the unit tangent to S(t) in the direction of increasing s; s is 
the arc abcissa of the point M~S(t), measured from the leading edge of the plate; 0 is the 

fluid density; ~o = (~+ + v_)/2; ~e is the translational velocity of the point M. 

Along with the stationary coordinate system 01x~y~, a body-fitted moving system of Car- 
tesian coordinates Oxy is introduced to solve the problem. The x axis is along the chord 
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